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Introduction and Summary

The construction of nerves and classifying spaces seeks to associate
geometrical objects to categorical structures, in such a way that those
objects should keep all the categorical structure information. This pro-
cess of taking classifying spaces leads to the homotopy theory of those
categorical structures, whose interest is well recognized; for example, let
us recall that Quillen [13] defines a higher algebraic K-theory by taking
homotopy groups of the classifying spaces of certain categories and also
recall that classifying spaces of symmetric monoidal categories pro-
vide the most noteworthy examples of spaces with the extra structure
required to define a Ω-spectrum [18, 22].

It was Grothendieck [10] who first associated a simplicial set NC to
a small category C, calling this simplicial set the nerve of C. The p-
simplices of NC are diagrams in C of the form x0 → x1 → . . . xp−1 → xp.
The classifying space of the category is the geometric realization [19] of
its nerve, BC = |NC|. Later, Segal [21] extended the realization process
to simplicial (topological) spaces. He observed that if C is a topological
category then NC is, in a natural way, a simplicial space and he defines
the classifying space BC of a topological category C as the realization
of the simplicial space NC. This general construction given by Segal
provides, for instance, a definition of classifying spaces of 2-categories.
A 2-category C is a category endowed with categorical hom-sets C(x, y),
for any pair of objects, in such a way that the compositions C(x, y) ×
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2 BULLEJOS and CEGARRA

C(y, z) → C(x, z) are functors. By replacing the hom-categories C(x, y)
by their classifying spaces BC(x, y), we obtain a topological category
BC (with discrete space of objects). Then, the classifying space BC of
the 2-category C is defined as that of the topological category BC.

However, there is another convincing way of associating a space
to a 2-category C. This way goes through what Duskin called [5] the
geometric nerve ∆C of the 2-category and it was developed, among
others, by Street [23] and Duskin himself. This geometric nerve ∆C
is a simplicial set, which encodes the entire 2-categorical structure of
C, whose simplices have the following pleasing geometrical description.
The vertices of ∆C are the objects x0 of C, the 1-simplices are the

arrows x0

x0,1 // x1 of C and the 2-simplices are triangles:

⇑ x0,1,2

x1
x1,2

!!CC
CC

CC
CC

x0

x0,1
=={{{{{{{{

x0,2
// x2

with x0,1,2 : x0,2 ⇒ x1,2 x0,1 a deformation (2-cell) in C. For n ≥ 3, an
n-simplex of ∆C is a diagram in C with the shape of the 2-skeleton of
an oriented standard n-simplex,
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whose vertices are then objects x0, . . . , xn, whose edges are arrows

xi

xi,j // xj , for 0 ≤ i < j ≤ n, and whose faces are triangles:

⇑ x
i,j,k

xj
xj,k

ÃÃB
BB

BB
BB

B

xi

xi,j
>>}}}}}}}}

xi,k
// xk
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The geometry of2-categories 3

with xi,j,k : xi,k ⇒ xj,k xi,j a deformation, for 0 ≤ i < j < k ≤ n. These
data are required to satisfy that each tetrahedron

x`

xi

xi,`
>>||||||||

xi,k //

xi,j ÃÃA
AA

AA
AA

A xk

xk,`
aaCCCCCCCC

xj

xj,k

>>||||||||

xj,`

OO
xi,j,k : xi,k ⇒ xj,k xi,j

xi,j,` : xi,` ⇒ xj,` xi,j

xi,k,` : xi,` ⇒ xk,` xi,k

xj,k,` : xj,` ⇒ xk,` xj,k

for 0 ≤ i < j < k < ` ≤ n, is commutative in the sense that the
following square of deformations

xi,`

x
i,k,`

®¶

x
i,j,` +3 xj,` xi,j

x
j,k,`

xi,j

®¶
xk,` xi,k

x
k,`

x
i,j,k +3 xk,l xj,k xi,j

commutes. This simplicial set ∆C becomes coskeletal in dimensions
greater than 3 [23, Theorem 23].

Since we have two different spaces associated to a 2-category C
(namely BC and |∆C|) and both have shown their utility, it seems
natural to compare them. To our knowledge, the only comparison that
has been given is in the case in which all arrows and deformations of C
are invertible, that is, when C is a 2-groupoid. For this case, Moerdijk
and Svensson [20] prove that the two classifying spaces associated as
above to a 2-groupoid C are homotopically equivalent. In their proof,
the restriction on C is essential, so that it can not be translated to
general 2-categories. The main purpose of this article is to prove the
following:

THEOREM 1. For any 2-category C there is a natural homotopy
equivalence

BC ∼ // |∆C|.

The above Theorem 1 can be applied to strict monoidal categories
when these are considered as 2-categories with only one object.

As an application we also prove Theorem 2 below, which is a gener-
alization of Theorem A of Quillen [13] to 2-categories. In our theorem
we replace the notion of homotopy fiber category of a functor by Gray’s
notion of homotopy fiber 2-category y′//F of a 2-functor F : C → C′ at
an object y′ ∈ C′ [9] (see Section 1 for details).
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4 BULLEJOS and CEGARRA

THEOREM 2. Let F : C → C′ be a 2-functor. If the classifying space
B(y′//F ) is contractible for every object y′ ∈ C′, then the induced map
BF : BC → BC′ is a homotopy equivalence.

This paper is organized into three sections. The first one is dedicated
to stating some concepts, results and terminology we are going to use
by reviewing definitions and basic facts concerning 2-categories, lax-
functors, nerves, realizations and classifying spaces. The material in
this first section is pretty standard, except perhaps Proposition 1.1,
so that an expert reader could skip this section. Section 2 is the main
one and it includes the proof of Theorem 1. In Section 3 we prove
Theorem 2.

1. Preliminaries and Notations

For the general background on 2-categories used in this paper we refer
to [2, 15], and on simplicial sets to [16]. Throughout this paper all
categories are assumed to be small.

2-Categories. A 2-category C is just a category enriched in the cat-
egory of small categories. Then, C is a category in which the hom-set
between any two objects x, y ∈ C is the set of objects of a category
C(x, y), whose arrows are called deformations and are denoted f : u ⇒
v. Moreover, the composition is a bifunctor C(x, y)× C(y, z) → C(x, z)
which is associative and has identities Idx ∈ C(x, x). This bifunctor
produces compositions of arrows and deformations respectively, both
denoted here by juxtaposition. On the other hand, composition in each
category C(x, y) is denoted by “◦”. Besides, we will usually identify an
arrow w : y → z with the identity deformation on w in the category
C(y, z), hence we write wf : wu ⇒ wv for the composition of f with
the deformation identity on w.

The underlying category of a 2-category C is the category obtained
by leaving out the deformations of C.

A 2-functor F : C → C′ between 2-categories is an enriched functor
and so it takes objects, arrows and deformation in C to objects, arrows
and deformations in C′ respectively, in such a way that all the 2-category
structure is preserved. Any 2-functor induces, by restriction, an or-
dinary functor between the corresponding underlying categories and
another one C(x, y) → C′(F (x), F (y)), for any pair of objects x, y ∈ C.

Given a 2-functor F : C → C′ and an object y′ ∈ C′ by the homotopy
fiber 2-category y′//F we mean Gray’s lax comma category py′q//F
where py′q : 1 → C′ is the “name of an object” 2-functor [9]. Its objects
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The geometry of2-categories 5

are pairs (u′, x) where x ∈ C is an object and u′ : y′ → F (x) is an arrow
in C′. Its morphisms are also pairs

(f ′, u) : (u′0, x0) → (u′1, x1)

where u : x0 → x1 is an arrow in C and f ′ : u′1 ⇒ F (u)u′0 is a
deformation in C′. Finally, its deformations

f : (f ′0, u0) ⇒ (f ′1, u1)

are deformations f : u0 ⇒ u1 in C such that f ′1 = F (f)u′0 ◦ f ′0.

Lax-functors. Given a category I and a 2-category C, a (normalized
or strictly unitary) lax-functor x : I → C consists of three maps which
assign to each object i ∈ I an object xi ∈ C, to each arrow τ : i → j
in I an arrow xτ : xi → xj in C and to each pair of composable arrows
i

τ−→j
σ−→k in I a deformation xσ,τ : xστ ⇒ xσ xτ in C, respectively.

These data are required to satisfy the following normalization and
coherence conditions:

• for any object i ∈ I, xIdi
= Idxi ,

• for any arrow τ : i → j in I, xτ,Idi = xτ = xIdj ,τ ,

• for any triple of composable arrows i
γ−→j

τ−→k
σ−→` in I,

xσ,τxγ ◦ xστ,γ = xσxτ,γ ◦ xσ,τγ . (1)

By a deformation f : x ⇒ y, between lax-functors x,y : I → C, we
mean a (normalized) lax-natural transformation. Then, f consists of a
pair of maps which assign to each object i ∈ I an arrow fi : xi → yi in
C and to each arrow τ : i → j in I a deformation fτ : fjxτ ⇒ yτfi in
C, respectively. Such that:

• for any object i ∈ I, fIdi = fi,

• for any pair of composable arrows i
τ−→j

σ−→k,

yσfτ ◦ fσxτ ◦ fkxσ,τ = yσ,τfi ◦ fστ . (2)

When two lax-functors x and y coincide over a set of (base-) objects
Θ ⊆ I, a deformation f : x ⇒ y is qualified as “relative” to Θ whenever
fi = Idxi , for all objects i ∈ Θ.

For a fixed (possibly empty) set of objects Θ, lax-functors from I to
C and deformations relative to Θ between them form a category that
we write here as

`Func(I, C)relΘ.
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6 BULLEJOS and CEGARRA

Note that lax-functors x : I → C such that all deformations xσ,τ are
identities are just ordinary functors to the underlying category of C, to
which we refer simply as functors from I to C. We write

Func(I, C)relΘ
for the full subcategory of `Func(I, C)relΘ whose objects are the func-
tors from I to C. Observe that the coherence condition (2) for a defor-
mation f between functors x,y : I → C reduces to the equality

fστ = yσfτ ◦ fσxτ . (3)

Let us now replace category I by a (directed and reflexive multi-
) graph G. By a morphism x : G → C we mean a (directed and
reflexive multi-) graph morphism from G to the underlying graph of
the underlying category of C. Then x consists of a pair of maps which
assign an object xi to each vertex i ∈ G and an arrow xτ : xi → xj to
each edge τ : i → j in G, respectively, such that the arrows associated
to degenerated edges are identities, that is, xIdi = Idxi . Given a set
Θ of vertices in G and two morphisms x,y : G → C, by a deformation
relative to Θ, f : x ⇒ y, we mean a pair of maps that assign an arrow
fi : xi → yi in C to each vertex i ∈ G and a deformation fτ : fjxτ ⇒ yτfi

to each edge τ : i → j, respectively, such that fi = Idxi for any vertex
i ∈ Θ and fIdj = Idfj for any vertex j ∈ G. Morphisms form G to
C and deformations relative to Θ form a category that we write as
Gph(G, C)relΘ.

Let us now suppose that the category I = I(G) is the free category
generated by the graph G. Then, any morphism x : G → C has a
unique extension to a functor x̃ : I → C [15, Theorem 1]; moreover,
any deformation relative to Θ, f : x ⇒ y, between morphisms has a
unique extension to a deformation relative to Θ, f̃ : x̃ ⇒ ỹ, between
the corresponding functors. On a string i0

σ1−→i1
σ2−→i2 . . . in−1

σn−→in of
edges in G, the deformation f̃ is inductively defined, by using (3), by
the formula

f̃σn···σ1 = yσn f̃σn−1···σ1 ◦ fσn x̃σn−1···σ1 .

Therefore, by restriction, we have an isomorphism of categories

Func(I(G), C)relΘ ∼= Gph(G, C)relΘ. (4)

Bellow we shall also comment on lax-functors from free categories.

PROPOSITION 1.1. Let I be the free category generated by a graph
G and let Θ be a subset of objects of I. Then, for any 2-category C,
the subcategory Func(I, C)relΘ is reflexive in `Func(I, C)relΘ (i.e., the
inclusion functor has a left adjoint).
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The geometry of2-categories 7

Proof. The reflector functor `Func(I, C)relΘ → Func(I, C)relΘ takes
a lax functor x : I → C to the unique functor x̃ that extends the
morphism restriction of x to the graph. Similarly, a deformation f :
x ⇒ y is taken to the unique deformation f̃ : x̃ ⇒ ỹ that extends the
deformation restriction of f to the graph (according to (4)). The counit
of the adjunction is the identity and the unit takes any lax functor x to
the deformation ε : x ⇒ x̃ which is inductively defined, using coherence
(2), by the equalities:

• εi = Idxi , for any object i ∈ I,

• ετ = Idxτ , for all τ ∈ G and

• εστ = εσxτ ◦ xσ,τ , for any composable pair of arrows i
τ−→j

σ−→k
with τ ∈ G and σ ∈ I.

Simplicial spaces and their realizations. The simplicial category
∆∠ has as objects the ordered sets [n] = {0, 1, . . . , n}, n ≥ 0, and as
arrows the (weakly) monotone maps α : [n] → [m]. This category is
generated by the directed graph with edges all maps

[n + 1]
σi // [n] [n− 1]

δioo , 0 ≤ i ≤ n,

where

σi(j) =
{

j j ≤ i
j − 1 j > i

and δi(j) =
{

j j < i
j + 1 j ≥ i .

A simplicial object in a category E is just a functor S : ∆∠ op → E .
Such a functor amounts to a collection {Sn = S[n], n ≥ 0} of ob-
jects in E together with morphisms di = S(δi) : Sn → Sn−1 and
si = S(σi) : Sn → Sn+1, 0 ≤ i ≤ n, called face and degeneracy
operators respectively, which satisfy the simplicial identities described,
for example, in [16, Definition 1.1]. A simplicial morphism f : S → S′
is just a natural transformation from S to S′, it then consists of a
family {fn = f[n] : Sn → S′n+1, n ≥ 0} of arrows in E which commute
with the face and degeneracy operators. If f, g : S → S′ are simpli-
cial morphisms, then a simplicial homotopy H : f ⇒ g is a system
{Hm : Sn → S′n+1, 0 ≤ m ≤ n} of arrows in E that satisfies the set of
homotopy identities described, for example, in [16, Definition 5.1].

A simplicial space is a simplicial object in the category Top, of
topological spaces, and a simplicial set is a simplicial object in the
category Set, of sets. By regarding a set as a discrete space, any sim-
plicial set is viewed as a simplicial space. Given a simplicial space S,
Segal [21] defines its realization |S| as follows: for each n ≥ 0, let
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8 BULLEJOS and CEGARRA

∆n denote the standard n-dimensional affine simplex and for each
map α : [n] → [m] in ∆∠ let α∗ : ∆n → ∆m be the induced affine
map (i.e., α∗(t0, . . . , tn) = (t′0, . . . , t′m) with t′i =

∑
α(i)=j tj). Then

the space |S| is defined from the topological sum
∐

n≥0 Sn × ∆n by
identifying (S(α)(x), t) ∈ Sn ×∆n with (x, α∗(t)) ∈ Sm ×∆m, for all
x ∈ Sm, t ∈ ∆n and α : [n] → [m] in ∆∠ . This construction is functorial
and any simplicial homotopy H : f ⇒ g, between simplicial space
morphisms f, g : S → S′, determines a homotopy H̃ : |f | ⇒ |g|, [17,
Corollary 11.10]. A simplicial map that induces a homotopy equivalence
on realizations is called a weak homotopy equivalence.

A bisimplicial set is a functor S : ∆∠ op ×∆∠ op → Set. This amounts
to a family of sets {Sp,q = S([p], [q]); 0 ≤ p, q} together with horizontal
and vertical face and degeneracy operators

Sp+1,q

sh
ioo Sp,q

dh
i // Sp−1,q and Sp,q+1

sv
joo Sp,q

dv
j // Sp,q−1,

with 0 ≤ i ≤ p and 0 ≤ j ≤ q respectively, such that, for all p and
q, both Sp,∗ and S∗,q are simplicial sets and the horizontal operators
commute with the vertical ones.

We now note that, on the one hand, any bisimplicial set S provides
two simplicial objects in the category of simplicial sets: the horizontal
one Sh : [p] 7→ Sp,∗ and the vertical one Sv : [q] 7→ S∗,q. Then, by taking
realization, S gives rise to two simplicial spaces |Sh| : [p] 7→ |Sp,∗| and
|Sv| : [q] 7→ |S∗,q|, respectively. On the other hand, by composing with
the diagonal functor diag : ∆∠ op → ∆∠ op × ∆∠ op, the bisimplicial set S
also provides another simplicial set diagS : [n] 7→ Sn,n, whose face and
degeneracy operators are given in terms of those of S by the formulas
di = dh

i dv
i and si = sh

i sv
i , respectively. It is known (e.g. [13, Lemma in

page 86]) that there are natural homeomorphisms

||Sh|| ∼= |diagS| ∼= ||Sv||. (5)

We also point out (see [3, 1.2,4.3] for example) that if f : S → S′ is a
bisimplicial morphism such that the induced maps |fp,∗| : |Sp,∗| → |S′p,∗|
(resp. |f∗,q| : |S∗,q| → |S′∗,q|) are homotopy equivalences for all p (resp.
q), then so is the map |diagf | : |diagS| → |diagS′|.

Nerves of categories and their classifying spaces. Any or-
dered set [n] can be considered as a category with the elements of
[n] as objects and only one arrow i → j when i ≤ j. After this
identification, the category ∆∠ can be considered as a full subcategory
of the category Cat of small categories. The nerve NC, of a cate-
gory C, is the simplicial set defined as the restriction of the Yoneda
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embedding Func(−, C) : Catop → Set to the category ∆∠ op; thus
NnC = Func([n], C), for each n ≥ 0.

Since the category [n] is the free category generated by the graph
0 → 1 → · · ·n − 1 → n, to give a functor x : [n] → C, say x(i → j) =

xi
xi,j // xj , is equivalent to giving a string of composable arrows in C

x0
x0,1 // x1

x1,2 // x2 → · · ·xn−1
xn−1,n// xn. (6)

Therefore we can make the identification

NnC =
∐

x0,...,xn∈Ob(C)
C(x0, x1)× . . . C(xn−1, xn)

and thus NC can be described as the simplicial set whose set of n-
simplices are strings of n composable arrows in C and N0C = Ob(C).
The i-face (resp. degeneracy) operator of an n-simplex such as (6) in
NC is obtained by deleting the object xi, putting xj at place j − 1
for all j > i and using composition, if needed, to complete the new
(n − 1)-simplex (resp. replacing the object xi by the arrow identity
Idxi : xi → xi).

By applying realization to NC, we obtain the classifying space BC of
the category C, that is BC = |NC|. This construction is functorial so that
we have a functor B from Cat to the category of CW-complexes and cel-
lular maps. We recall that functors related by natural transformations
go to homotopic simplicial maps [11, VI, Proposition 2.2.2] and then
to homotopic cellular maps. As a consequence, if a functor F : C → C′
has a left or right adjoint then the induced map BF : BC → BC′ is a
homotopy equivalence.

Nerves of 2-categories and their classifying spaces. For any
2-category C, its nerve NC is the simplicial category (i.e., the simplicial
object in Cat) obtained by restricting the functor Func(−, C)relOb(−) :
Catop → Cat to the category ∆∠ op; thus

NnC = Func([n], C)relOb[n],

for each n ≥ 0. Observe that the simplicial set of objects of NC coincides
with the nerve of the underlying category of C. Moreover, since [n] is a
free category, by the isomorphism (4), then giving an arrow f : x → y
in NnC (i.e., a lax natural transformation relative to the objects of [n])
is equivalent to giving the string of deformations in C,

x0

x0,1

&&

x′0,1

88⇓ f01 x1

x1,2

&&

x′1,2

88⇓ f12 x2 xn−1

xn−1,n

((

x′n−1,n

66⇓ fn−1n xn .

geometry.tex; 19/02/2002; 9:46; p.9



10 BULLEJOS and CEGARRA

Therefore we can make the identification (cf. [12])

NnC =
∐

x0,...,xn∈C
C(x0, x1)× C(x1, x2)× · · · × C(xn−1, xn)

and N0C = Ob(C), as a discrete category. After the above identification,
the face and degeneracy functors are defined in the standard way.

The classifying space BC of the 2-category C is, by definition, the
realization of the simplicial space obtained by composing NC : ∆∠ op →
Cat with the classifying space functor B : Cat → Top, that is,

BC = |BNC|.
Note that, for each n ≥ 0,BNnC = |NNnC|. Then, we have a natural
homeomorphism

BC ∼= |diagNNC|, (7)

where NNC : ([p], [q]) 7→ NpNqC is the bisimplicial set double nerve of
the 2-category C. This construction of classifying space defines a functor
from the category of 2-categories to the category of CW-complexes and
cellular maps.

2. Realizations of geometric nerves are classifying spaces

It is not difficult to see that the data for an n-simplex x of the geometric
nerve ∆C of a 2-category C, as described in the introduction, is the same
as the data for a lax functor x : [n] → C. That is, x consists of a family

x = {xi, xi,j , xi,j,k}0≤i≤j≤k≤n

with xi objects, xi,j : xi → xj arrows and xi,j,k : xi,k ⇒ xj,k xi,j

deformations in C, respectively, such that

• xi,i = Idxi , 0 ≤ i ≤ n,

• xi,j,j = Idxi,j = xi,i,j , 0 ≤ i ≤ j ≤ n, and

• xk,`xi,j,k ◦ xi,k,` = xj,k,`xi,j ◦ xi,j,`, 0 ≤ i ≤ j ≤ k ≤ ` ≤ n.

Thus, the simplicial set ∆C can be described as the functor that takes
each ordered set [n] to the set of lax functors from [n] to C. The face
operators dm = δ∗m : ∆nC → ∆n−1C act by deleting all the elements
indexed by m and renumbering every index ` > m as `− 1, that is, for
any x ∈ ∆nC, (dmx)i = xδm(i), (dmx)i,j = xδm(i),δm(j) and (dmx)i,j,k =
xδm(i),δm(j),δm(k). Analogously, the degeneracy operators are sm = σ∗m :
∆nC → ∆n+1C.
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The geometry of2-categories 11

As we said in the introduction, we devote this section to proving
Theorem 1. To this end, we are going to build a diagram of simplicial
sets and natural maps,

diagNNC
i

²²

Z // TNC
T(i)

²² η

¸¸

diagN∆C Z′ // T∆C

∆C

ψ
bbFFFFFFFF

φ

hh

(8)

in which both the square and the triangle placed at the bottom of
the diagram are commutative (i.e., Z ′i = T(i)Z and ψ = Z ′φ) and the
other triangle is commutative only up to homotopy (so that we will find
a simplicial homotopy H : T(i) ⇒ ψη). Then we will observe that the
maps i, Z, Z ′ and φ all induce homotopy equivalences on realizations
and we conclude that so does every other map in the diagram. In
particular, we will have that the composition ηZ induces a natural
homotopy equivalence BC ∼−→|∆C| and Theorem 1 will be proved.

The remainder of Section 1 is devoted to carrying out the above
objectives, and so we naturally divide it into five subsections.

2.1. Using the Artin-Mazur T-construction: the simplicial
set TNC and the maps Z and η

There is another way of associating a simplicial set TNC to a 2-category
C, whose simplices also have a pleasing geometric description. This
simplicial nerve is defined by applying Artin-Mazur “Total simplicial
set” construction [1, Section III] to the bisimplicial set NNC double
nerve of C that we have already introduced.

Recall that, for a bisimplicial set S, the Artin-Mazur total simplicial
set T(S) is defined as

Tn(S) =

{
(x0, x1, . . . , xn) ∈

n∏

i=0

Si,n−i; dv
0xi = dh

i+1xi+1, 0 ≤ i < n

}
,

n ≥ 0, with face and degeneracy operators given by

Tn+1(S) Tn(S)
Sioo Di // Tn−1(S) ,

Di(x0, . . . , xn) = (dv
i x0, d

v
i−1x1, . . . , d

v
1xi−1, d

h
i xi+1, d

h
i xi+2, . . . , d

h
i xn),

Si(x0, . . . , xn) = (sv
i x0, s

v
i−1x1, . . . , s

v
0xi, s

h
i xi, s

h
i xi+1, . . . , s

h
i xn).
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12 BULLEJOS and CEGARRA

Also recall that Zisman proves that there is a natural comparison
map

Z = ZS : diagS → T(S),

which takes a n-simplex x ∈ diagS to

Z(x) =
(
(dh

1)nx, (dh
2)n−1dv

0x, . . . , (dh
i+1)

n−i(dv
0)

ix, . . . , (dv
0)

nx
)

.

This simplicial map induces a homotopy equivalence on realizations
|Z| : |diag S| ∼−→|T (S)| (cf. [8]).

The simplicial set TNC is defined as TNC = T(NNC). We then have
the canonical map

Z = ZNNC : diagNNC −→ TNC, (9)

which induces a homotopy equivalence

|Z| : BC ∼ // |TNC|,

therefore the simplicial set TNC also realizes the classifying space of
the 2-category C.

The simplices of TNC have the following geometric description: the
0- and 1-simplices of TNC are the objects and arrows of C respectively,
its 2-simplices are diagrams in C of the form

x0
x0
1 // x1

x1
2

&&

x0
2

88⇑ x̄1
2

x2 (10)

with x̄1
2 : x0

2 ⇒ x1
2 a deformation in C, its 3-simplices are diagrams in C

of the form

x0
x0
1 // x1

x1
2

&&

x0
2

88⇑ x̄1
2

x2 x1
3

//

x2
3

⇑ x̄2
3 ¿¿

x0
3

⇑ x̄1
3

BBx3

and so on. More precisely, an n-simplex x of TNC is a family

x = {xi, x
i
j , x̄

i
j}, (11)

consisting of objects xi ∈ C, for 0 ≤ i ≤ n, arrows xi
j : xj−1 → xj , for

0 ≤ i < j ≤ n, and deformations x̄i
j : xi−1

j ⇒ xi
j , for 0 < i < j ≤ n.
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The face operators Dm : TN
nC → TN

n−1C, 0 ≤ m ≤ n, are given by the
formulas

(Dmx)i = xδm(i), (Dmx)i
j =





x
δm(i)
δm(j) j 6= m

xi
m+1x

i
m j = m,

and

(Dmx)i
j =





x̄
δm(i)
δm(j) i 6= m 6= j

x̄i
m+1x̄

i
m j = m

x̄m+1
j+1 ◦ x̄m

j+1 i = m,

and the degeneracy operators Sm : TN
mC → TN

m+1C, 0 ≤ m ≤ n, are
given by

(Smx)i = xσm(i), (Smx)i
j =





x
σm(i)
σm(j) j 6= m + 1

Idxm j = m + 1,

and

(Smx)i
j =





x̄
σm(i)
σm(j) i 6= m + 1 6= j

IdIdxm
j = m + 1

Idxm
m+1

i = m + 1.

We are now ready to define the simplicial map

η : TNC → ∆C. (12)

This map η is the identity at levels zero and one, at level two it takes
a 2-simplex as (10) to the 2-simplex of ∆C represented by the triangle

⇑x̄1
2x0

1

x1
x1
2

!!CC
CC

CC
CC

x0

x0
1

=={{{{{{{{

x0
2x0

1

// x2

and, in general, η takes an n-simplex x ∈ TNC as (11) to the geometric
n-simplex ηx given by

(ηx)i = xi,
(ηx)i,j = xi

j . . . xi
i+1

(ηx)i,j,k = (x̄j
k ◦ . . . ◦ x̄i+1

k ) . . . (x̄j
j+1 ◦ . . . ◦ x̄i+1

j+1)x
i
j . . . xi

i+1

⇑(ηx)i,j,k

xj

(ηx)j,k=xj
k
...xj

j+1

!!CC
CC

CC
CC

CC

xi

(ηx)i,j=xi
j ...xi

i+1

>>}}}}}}}}}

xi
k...xi

j+1xi
j ...xi

i+1

// xk .
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14 BULLEJOS and CEGARRA

2.2. The simplicial category ∆C and the map i : NNC → N∆C
The geometric nerve ∆C of a category C is the simplicial set of objects
of a simplicial category ∆C, which is defined by

∆C = `Func(−, C)relOb[−] : ∆∠ op −→ Cat.

Thus, each category ∆nC has ∆nC as set of objects and its arrows are
deformations relative to the set of objects of [n]. Therefore, in order to
have an arrow f : x → x′ in ∆nC we need xi = x′i, for all 0 ≤ i ≤ n,
and in this case f consists of a family f = {fi,j : xi,j ⇒ x′i,j}0≤i≤j≤n of
deformations in C, which satisfy the equations

• fi,i = Idxi , 0 ≤ i ≤ n and

• fj,kfi,j ◦ xi,j,k = x′i,j,k ◦ fi,k , 0 ≤ i ≤ j ≤ k ≤ n.

The face and degeneracy functors are dm = δ∗m : ∆nC → ∆n−1C and
sm = σ∗m : ∆nC → ∆n+1C respectively, so that they act on objects as
in the geometric nerve of C, and for arrows f : x → x′ in ∆nC,

(dmf)i,j = fδm(i),δm(j) and (smf)i,j = fσm(i),σm(j).

This simplicial category ∆C defines, by taking the nerve of each
category ∆nC, a bisimplicial set

N∆C : ([p], [q]) 7→ Np∆qC.
More explicitly, an element χ ∈ Np∆qC can be described as a string

χ = ( x0
f1

// x1 → · · · → xp−1
fp

// xp) ,

of p composable arrows in ∆qC. The vertical face and degeneracy op-
erators

Np∆q+1C Np∆qCsv
moo dv

m // Np∆q−1C , 0 ≤ m ≤ q

are induced by those of ∆C, that is

dv
m(χ) = ( dmx0

dmf1
// dmx1 → · · · → dmxp−1

dmfp
// dmxp)

and

sv
m(χ) = ( smx0

smf1
// smx1 → · · · → smxp−1

smfp
// smxp) .

The horizontal face and degeneracy operators

Np+1∆qC Np∆qCsh
moo dh

m // Np−1∆qC , 0 ≤ m ≤ q
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are those of the nerve N∆qC, that is, dh
m acts by deleting xm in the

string χ, by putting xj at place j − 1 for all j > m and by using
composition, if needed, to form the new string dmχ. In the same way,
sh
m duplicates xm at place m + 1 and introduces Idxm on the string.

We note now that the simplicial category NC is a simplicial subcat-
egory of ∆C via the inclusion functors

iq : NqC = Func([q], C)relOb[q] ↪→ `Func([q], C)relOb[q] = ∆qC, q ≥ 0.

Then we have a bisimplicial inclusion

i : NNC ↪→ N∆C, (13)

whose restriction to the diagonal gives a simplicial inclusion, which we
also denote as

i : diagNNC → diagN∆C. (14)

Next, Theorem 2.1 proves that this inclusion is a weak homotopy
equivalence.

THEOREM 2.1. For any 2-category C, the map

|i| : BC = |diagNNC| ∼ // |diagN∆C|,
induced by the inclusion (14) is a homotopy equivalence.

Proof. Since the category [q] is free on a graph, by Proposition 1.1,
each inclusion functor iq has a right adjoint. Therefore, the induced
map on classifying spaces

Biq : BNqC = |NNqC| ∼ // B∆qC = |N∆qC|
is a homotopy equivalence, for all q ≥ 0, whence Theorem 2.1 follows.

2.3. Using the Artin-Mazur T construction again: the
simplicial set T∆C and the maps Z ′ and T(i)

We now consider the simplicial category ∆C, which was introduced in
2.2, and then the total simplicial set

T∆C = TN∆C,
associated to the bisimplicial set N∆C. At dimensions ≤ 1, this simpli-
cial set TNC coincides with ∆C (and also with TNC). Thus, the 0- and
1-simplices of TNC are the objects and arrows of C, respectively. For
n ≥ 2, an n-simplex ζ of TNC is a list

ζ = (xn, d0xn fn−1
// xn−1, · · · , d0x2 f1

// x1), (15)
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16 BULLEJOS and CEGARRA

in which each

xm = (xm
i , xm

i,j : xm
i → xm

j , xm
i,j,k : xm

i,k ⇒ xm
j,kx

m
i,j) ∈ ∆mC

is a geometric m-simplex of C, 1 ≤ m ≤ n, and each

fm = (fm
i,j : xm+1

i+1,j+1 ⇒ xm
i,j) : d0xm+1 → xm

is a morphism in the category ∆mC (so xm
i = xm+1

i+1 ), for all 1 ≤ m < n.
The face and degeneracy operators

TN
n+1C TN

nC
Sioo Di // TN

n−1C , 0 ≤ m ≤ n,

on an n-simplex ζ ∈ T∆C as (15) are given by the formulas:

Dmζ=





(xn−1,fn−2,...,f1) m=0

(dmxn,dm−1fn−1,...,d1fn−m+1,fn−m−1d0fn−m,fn−m−2,...,f1) 0<m<n

(dnxn,dn−1fn−1,...,d2f2) m=n,

and

Smζ=





(s0xn,xn Id // xn,fn−1,...,f1) m=0

(smxn,sm−1fn−1,...,s0fn−m,xn−m Id // xn−m,fn−m−1,...,f1) 0<m<n

(snxn,sn−1fn−1,...,s1f1,d0x1 Id // d0x1) m=n,

for all n ≥ 2.
Zisman’s comparison map gives rise to the simplicial map

Z ′ = ZN∆C : diagN∆C → T∆C, (16)

which is a weak homotopy equivalence.
The simplicial map

T(i) : TNC → T∆C, (17)

is that induced by the bisimplicial inclusion (13) i : NNC → N∆C on
total complexes. It can be described as follows: Given an n-simplex x =
{xi, x

i
j , x̄

i
j} ∈ TNC, let us write ςnx ∈ ∆C for the geometric n-simplex

given by the family

(ςnx)i = xi, (ςnx)i,j = x0
j · · ·x0

i+1, and (ςnx)i,j,k = Id(ςnx)i,k
,

and let ς̃n−1x : d0ςnx → ςn−1d0x be the arrow in ∆n−1C given by the
deformations

(ς̃n−1x)i,j = x̄1
j+1 · · · x̄1

i+2 : x0
j+1 · · ·x0

i+2 ⇒ x1
j+1 · · ·x1

i+2.
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The geometry of2-categories 17

Then, T(i) maps a simplex x ∈ TN
nC to

T(i)x = (ςnx, ς̃n−1x, ς̃n−2d0x, · · · , ς̃1dn−2
0 x) ∈ T∆

n C.
At this point we have completely described the commutative square

diagNNC
i

²²

Z // TNC
T(i)

²²
diagN∆C Z′ // T∆C

which forms part of the diagram (8) (the commutativity follows from
the naturality of Zisman’s maps). We also know that both Z and Z ′ are
weak homotopy equivalences and, by Theorem 2.1, so is i. Therefore
we conclude the following:

THEOREM 2.2. For any 2-category, the map

|T(i)| : |TNC| ∼ // |T∆C|,
induced by (17) on realizations, is a homotopy equivalence.

2.4. The maps φ and ψ

As we showed in Subsection 2.2, the geometric nerve ∆C of a 2-category
C is the simplicial set of objects of the simplicial category ∆C. Hence,
if we regard ∆C as a discrete simplicial category (i.e., with only iden-
tities), we have an inclusion simplicial functor ∆C ↪→ ∆C that induces
a bisimplicial map

φ : ∆C ↪→ N∆C, (18)

where ∆C is considered as a bisimplicial set that is constant in the
horizontal direction (i.e., (∆C)p,q = Np∆qC = ∆qC). Thus, for any
x ∈ ∆qC,

φp,q(x) = (sh
0)p(x) = (x Id // x → · · ·x Id // x) ∈ Np∆qC.

We shall also write
φ : ∆C ↪→ diagN∆C, (19)

for the induced simplicial map on diagonals.

LEMMA 2.3. For any 2-category C and any p ≥ 1, the simplicial set
Np−1∆C is a simplicial deformation retract of Np∆C, via the simplicial
injection sh

0 : Np−1∆C ↪→ Np∆C.
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18 BULLEJOS and CEGARRA

Proof. Since dh
0sh

0 = Id, to prove this lemma we only have to show
the existence of a simplicial homotopy H : id ⇒ sh

0dh
0 .

In order to define H, we first associate a geometric (q + 1)-simplex
µmf ∈ ∆C to any arrow f : x → y in ∆qC and any 0 ≤ m ≤ q. This
simplex µmf is given by

(µmf)i = xσm(i) = yσm(i) , (µmf)i,j =
{

yi,j j ≤ m
xσm(i),j−1 m < j

and

(µmf)i,j,k =





yi,j,k k ≤ m
xj,k−1fi,j ◦ xi,j,k−1 j ≤ m < k
xσm(i),j−1,k−1 m < j

,

Observe that µ0f = s0y and dq+1µqf = y, for all f : x → y, and
that for f = Idx, any identity in ∆qC, we have µ(Idx) = smx, for all
0 ≤ m ≤ q. Next, we consider the arrows

hmf : smx → µmf ,

in ∆q+1C, defined by

(hmf)i,j =
{

Idyi,j j ≤ m
fσm(i),j−1 m < j

,

(note that h0 = sv
0 : N1∆qC → N1∆q+1C, and that dv

q+1hqf = Idy for
all f : x → y). And finally we define the homotopy H by the maps

Hm : Np∆qC → Np∆q+1C, 0 ≤ m ≤ q,

which send a q-simplex χ = ( x0
f0

// x1 // · · · // xp−1
fp

// xp) in N∆C
to the (q + 1)-simplex

Hmχ = ( µmf1
hmf1

// smx1
smf2

// · · · // smxp−1
smfp

//smfp
// smxp) .

We leave it to the reader to check that H is indeed a simplicial homo-
topy as required.

By an iterative application of above Lemma 2.3, the simplicial map

φp,∗ : ∆C = N0∆C → Np∆C

induces, for all p ≥ 0, a homotopy equivalence on geometric realizations,
and therefore so does the simplicial map φ : ∆C → diagN∆C. We have
then proved Theorem 2.4 stated below.
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THEOREM 2.4. For any 2-category C, the map

|φ| : |∆C| ∼ // |diagN∆C|

induced by the above simplicial map (19) is a homotopy equivalence.

To fully complete the data in diagram (8) it only remains to intro-
duce the simplicial map

ψ : ∆C → T∆C, (20)

which is defined to be the composite map ∆C φ // diagN∆C Z′ // T∆C,
of the above φ (19) with Zisman map Z ′ (16). Explicitly, ψ maps a
simplex x ∈ ∆nC to

ψ(x) = (x, d0x
Id // d0x, · · · , dn−1

0 x Id // dn−1
0 x).

Since φ and Z ′ are both weak homotopy equivalences, we have

THEOREM 2.5. For any 2-category C, the map

|ψ| : |∆C| ∼ // |T∆C|

induced by the above simplicial map (20) is a homotopy equivalence.

2.5. The map |η| is a homotopy equivalence

We are now going to prove that the triangle

TNC
T(i)

²²

η

!!DD
DD

DD
DD

DD
DD

T∆C ∆Cψoo

is commutative up to a simplicial homotopy. Then, since T(i) and ψ
are both weak homotopy equivalences, by Theorems 2.2 and 2.5, we
will have proved that |η| is also a homotopy equivalence.

PROPOSITION 2.6. There is a simplicial homotopy H : T(i) ⇒ ψη.

Proof. In order to define H, we first build a geometric (n+1)-simplex
hmx ∈ ∆C, associated to any n-simplex x ∈ TNC and any 0 ≤ m ≤ n.
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20 BULLEJOS and CEGARRA

This simplex hmx is given by

(hmx)i = xσm(i),

(hmx)i,j =





(ηx)i,j = xi
j · · ·xi

i+1 j ≤ m

(ςnx)σm(i),j−1 = x0
j−1 · · ·x0

σm(i)+1 m < j

and

(hmx)i,j,k =




(ηx)i,j,k = (x̄j
k ◦ · · · ◦ x̄i+1

k ) · · · (x̄j
j+1 ◦ · · · ◦ x̄i+1

j+1)x
i
j · · ·xi

i+1 k ≤ m

x0
k · · ·x0

j+1(x̄
i
j ◦ · · · ◦ x̄1

j ) · · · (x̄i
i+1 ◦ · · · ◦ x̄1

i+1) j ≤ m < k

Idx0
k−1···x0

σm(i)+1
m < j .

Observe that h0x = s0ςnx, h1x = s1ςnx and dn+1hnx = ηx. Next, we
consider the arrows

h̃mx : d0hmx → hm−1d0x

in ∆nC, for m ≥ 1, defined by the family of deformations

(h̃mx)i,j =





Id(ηd0x)i,j
j < m

x̄1
j · · · x̄1

σm(i+1)+1 m ≤ j.

And, finally, the homotopy H is given by the maps

Hm : TN
nC → T∆

n+1C, 0 ≤ m ≤ n,

which send a n-simplex x = {xi, x
i
j , x̄

i
j}, in TNC to the (n + 1)-simplex

Hmx =




(h0x,Idςnx,ς̃n−1x,ς̃n−2d0x,···,ς̃1dn−2
0 x) m=0

(hmx,̃hmx,̃hm−1d0x,···,̃h1dm−1
0 x,Idςn−mdm

0
x,ς̃n−m−1dm

0 x,···,ς̃1dn−2
0 x) 0<m<n

(hnx,̃hnx,̃hn−1d0x,···,̃h1dn−1
0 x) m=n

(note that H0 = s0T(i) and H1 = s1T(i)). To prove in full that
H is a simplicial homotopy between T(i) and ψη, some verifications
are needed, which are straightforward (though tedious) and we will
therefore leave them to the reader.

As an immediate consequence of the comments at the beginning
of this Section 2 and the above Proposition 2.6, we obtain Theorem
2.7 below, from which the proof of Theorem 1 in the introduction is
completed.
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THEOREM 2.7. For any 2-category C, the map

|η| : |TNC| ∼ // |∆C|
induced by the simplicial map (12) is a homotopy equivalence.

Remark. A strict monoidal category C = (C,⊗, I) [15] can be viewed
as a 2-category with only one object, say I, the objects x of C as
arrows x : I → I and the arrows of C as deformations. It is the
horizontal composition of arrows and deformations given by the strict
tensor ⊗ : C×C → C and the vertical composition of deformations given
by the composition of arrows in C. Then, the classifying space BC of
the monoidal category is just the classifying space of the 2-category
it defines. Then, by Theorem 1, the geometric nerve ∆C realizes the
classifying space of the monoidal category C, that is, BC ' |∆C|.

The geometric nerve ∆C is a 3-coskeletal reduced simplicial set
whose simplices have the following simplified interpretation: the 1-
simplices are the objects of C, the 2-simplices are morphisms of C of
the form

x0,2
x0,1,2 // x1,2 ⊗ x0,1

and the 3-simplices are commutative squares in C of the form

x0,3
x0,1,3 //

x0,2,3
²²

x1,3 ⊗ x0,1

x1,2,3 ⊗ Id
²²

x2,3 ⊗ x0,2
Id⊗ x0,1,2 // x2,3 ⊗ x1,2 ⊗ x0,1 ,

the face operator di is obtained by deleting the data in which the index
i appears.

When the strict monoidal category C is a categorical group, that
is, when all objects and arrows are invertible, it is largely known that
BC ' |∆C|. Indeed, in that case C is just an internal category in the
category of groups and the nerve NC is a simplicial group. Thus, we
can apply Kan’s classifying complex functor W [16] to NC and the
resulting simplicial set is isomorphic to the geometric nerve of C, that is,
WNC ∼= ∆C. We also recall that strict categorical groups are equivalent
to crossed modules (see [15] for example) and that classifying spaces of
crossed modules are defined as the classifying spaces of the categorical
groups they define ([4, 14]). We finally note that geometric nerves of
non-necessarily strict categorical groups have been treated in [6, 7] and,
more generally, geometric nerves of arbitrary monoidal categories (even
of bicategories) have been treated in [5]
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3. A sufficient condition for a 2-functor to induce a
homotopy equivalence

In this section we prove Theorem 2, stated in the Introduction. Let us
recall that Quillen’s Theorem A [13] asserts that a functor F : C → C′
induces a homotopy equivalence BF : BC → BC′ whenever the classify-
ing space of every homotopy fiber category y′/F is contractible, for all
objects y′ ∈ C′. The homotopy fiber category y′/F has as objects the
pairs (u′, x), with x ∈ C an object and u′ : y′ → F (x) an arrow in C′.
The arrows u : (u′

0
, x0) → (u′

1
, x1) in y′/F are arrows u : x0 → x1 in C

such that u′
1

= F (u)u′
0
.

In section 1 we have recalled the notion of homotopy fiber 2-category
y′//F , for any 2-functor F : C → C′ between 2-categories and any object
y′ ∈ C′. In particular, by taking F = IdC , we have the lax comma 2-
categories y//C = y//IdC , y ∈ ObC. The objects of the 2-category y//C
are pairs (v, x) with v : y → x an arrow, its arrows are also pairs
(f, u) : (v, x) → (v′, x′) with u : x → x′ an arrow and f : v′ ⇒ uv a
deformation, and its deformations g : (f, u) ⇒ (f ′, u′) are deformations
g : u ⇒ u′ such that f ′ = gv ◦ f .

As for the case of categories, we have:

PROPOSITION 3.1. Given a 2-category C,for any object y ∈ C, the
classifying space B(y//C) is contractible.

Proof. By Theorem 1 we have B(y//C) ' |∆(y//C)|. Let Dec(∆C) be
the simplicial set obtained from the geometric nerve of C by “forgetting”
the first face and degeneracy operators at each level and “renumbering”
the levels [11, Chap. VI,1]. This is an augmented simplicial set over
∆0C = ObC, with augmentation given by the face operator d1 : ∆1C →
∆0C, on which the first degeneracy operators s0 define a simplicial
contraction.

Furthermore, the augmentation d1 : ∆1C → ∆0C gives rise to a
decomposition of the simplicial set Dec(∆C) as

Dec(∆C) =
∐

y∈Ob(C)
d−1

1 (y),

in such a way that the above simplicial contraction of Dec(∆C) restricts
to the simplicial subsets fibers d−1

1 (y), for any object y ∈ C. Therefore,
all the simplicial sets d−1

1 (y) are homotopically trivial. However, it is not
difficult to identify each fiber d−1

1 (y) with the geometric nerve ∆(y//C)
of the lax comma 2-category y//C and so |∆(y//C)| is contractible.

We now are ready to prove our Theorem 2, an extension of Quillen’s
Theorem A for 2-categories.
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3.1. Proof of Theorem 2

Let F : C → C′ be a 2-functor such that, for any object y′ ∈ C′, the
space B(y′//F ) is contractible. We have to prove that the induced map
BF : BC → BC′ is a homotopy equivalence.

Hereafter, we shall also write F : ∆C → ∆C′ for the simplicial
map induced by the 2-functor F : C → C′ between the corresponding
geometric nerves.

Let us consider the bisimplicial set S = S(F ), which is given by:

Sp,q =
{
(x,y′) ∈ ∆pC ×∆p+q+1C′; F (x) = dq+1

0 (y′)
}

, p, q ≥ 0 ,

with horizontal and vertical face and degeneracy operators

Sp+1,q

sh
ioo Sp,q

dh
i // Sp−1,q and Sp,q+1

sv
joo Sp,q

dv
j // Sp,q−1,

given by

dh
i (x,y′) = (dix, dq+i+1y′), dv

j (x,y′) = (x, djy′),

sh
i (x,y′) = (six, sq+i+1y′), sv

j (x,y′) = (x, sjy′).

We first observe that, for any p, the canonical projection

ϕp : Sp,0 → ∆pC , (x, y′) 7→ x

defines an augmentation on the simplicial set Sp,∗ over the set ∆pC and
that these augmentations ϕp, since they commute with the horizontal
face and degeneracy operators, define a bisimplicial map

ϕ : S → ∆C , (x,y′) 7→ x ,

where ∆C is considered as a constant bisimplicial set in the vertical
direction.

Furthermore, every augmented simplicial set Sp,∗ → ∆pC has a sim-
plicial contraction, which is given by the maps εq+1 : Sp,q → Sp,q+1, q ≥
−1, defined by

ε0(x) = (x, s0F (x)), x ∈ ∆pC
εq+1(x,y′) = (x, sq+1y′), (x,y′) ∈ Sp,q , q ≥ 0.

It follows that each induced map |ϕp| : |Sp,∗| ∼→ ∆pC is a homotopy
equivalence and therefore the induced map |diagϕ| : |diagS| ∼→ |∆C| is
also a homotopy equivalence.

Secondly, we note that, for any q, the map

ϕ′q : S0,q → ∆qC′ , (x,y′) 7→ dq+1y′ ,
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gives an augmentation on S∗,q over the set ∆qC′ and that these maps
define a bisimplicial map

ϕ′ : S → ∆C′ , (x,y′) 7→ dq+1y′ ,

where ∆C′ is considered as a bisimplicial set constant in the horizontal
direction.

Let us now assume that we have proved that the induced map

|diagϕ′| : |diagS| → |∆C′| (21)

is a homotopy equivalence. This will be proved later, after Lemma 3.2
below.

Then, finally, we consider the following commutative diagram

|∆C′| |diagS(F )||diagϕ′|oo |diagϕ| //

|diagγ|
²²

|∆C| ' BC
|F |

²²
BF

²²
|∆C′| |diagS(IdC′)|

|diagϕ′|oo |diagϕ| // |∆C′| ' BC′

where γ : S(F ) → S(IdC′) is the bisimplicial map given by γp,q(x,y′) =
(F (x),y′). In this diagram, all the horizontal maps are homotopy equiv-
alences (note that, by Proposition 3.1 above, the homotopy fiber 2-
categories y′//IdC′ = y′//C′ are contractible). Therefore, first |diagγ|
and then |F | and BF are homotopy equivalences, and the proof will be
complete.

It remains to prove that the induced map |diagϕ′| in (21) is a
homotopy equivalence. To do so, we return to the proof of Theorem 2.

For any q ≥ 0, the augmentation ϕ′q : S0,q → ∆q(C′) produces a
decomposition of the simplicial set S∗,q as

S∗,q =
∐

y′∈∆qC′
S∗,q(y′),

where S∗,q(y′) = ϕ′q
−1(y′) is the fiber of ϕ′q at y′. That is, S∗,q(y′) is

the simplicial subset of S∗,q with

Sp,q(y′) =
{
(x, z′) ∈ ∆pC ×∆p+q+1C′ ; dq+1

0 z′ = F (x), dp+1
q+1z

′ = y′
}

.

Observe that, for any q ≥ 1 and any y′ ∈ ∆qC′, the simplicial map
dv

q−1 : S∗,q → S∗,q−1 restricts to a simplicial map

dv
q−1 : S∗,q(y′) → S∗,q−1(dq−1y′)

and that we have:
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LEMMA 3.2. The induced map

|dv
q−1| : |S∗,q(y′)| −→ |S∗,q−1(dq−1y′)|

is a homotopy equivalence, for all q ≥ 1 and all y′ ∈ ∆qC′.

Proof. In fact, we are going to prove that S∗,q−1(dq−1y′) is a simpli-
cial deformation retract of S∗,q(y′), with dv

q−1 as retraction and section
given by the simplicial map

Γ : S∗,q−1(dq−1y′) −→ S∗,q(y′); (x, z′) 7→ (x, z′′) ,

where, if (x, z′) ∈ Sp,q−1(dq−1y′), the geometric simplex z′′ ∈ ∆p+q+1C′
is defined as follows:

z′′
i

=

{
z′

σq−1(i)
i 6= q − 1

y′
q−1

i = q − 1 ,
z′′

i,j
=





z′
σq−1(i),σq−1(j)

q − 1 /∈ {i, j}
y′

i,q−1
i ≤ q − 1 = j

z′
q−1,j−1

y′
q−1,q

i = q − 1 < j ,

and

z′′
i,j,k

=





z′
σq−1(i),σq−1(j),σq−1(k)

q − 1 /∈ {i, j, k}
y′

i,j,q−1
k = q − 1

(z′
q−1,k−1

y′
i,q−1,q

) ◦ z′
i,q−1,k−1

j = q − 1

z′
q−1,j−1,k−1

y′
q−1,q

i = q − 1 .

It is straightforward to check that:

• dq+1
0 z′′ = F (x) and dp+1

q+1z
′′ = y′, so that (x, z′′) ∈ Sp,q(y′),

• dq−1z′′ = z′, whence dv
q−1Γ = Id, and

• Γ is a simplicial map.

Finally, a simplicial homotopy H : Id ⇒ Γdv
q−1 is given by the maps

Hm : Sp,q(y′) −→ Sp+1,q(y′), (x, z′) 7→ (smx, hmz′), 0 ≤ m ≤ p ,

where the geometric simplex hmz′ ∈ ∆p+q+1C′ is defined as sq+m+1z′ =
σ∗q+m+1z

′, except for the following elements:

(hmz′)q−1,j = z′
q,j

z′
q−1,q

q < j ≤ q + m + 1,

(hmz′)
i,q−1,k

= (z′
q−1,q,k

z′
i,q−1

) ◦ z′
i,q−1,k

q < k ≤ q + m + 1,

(hmz′)
q−1,j,k

= z′
q,j,k

z′
q−1,q

q ≤ j ≤ k ≤ q + m + 1,

(hmz′)
q−1,j,k

= (z′
q−1,j,k−1

z′
q−1,q

) ◦ z′
q−1,q,k−1

q < j ≤ q + m + 1 < k .
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An iterative use of the above Lemma 3.2 shows that the composite
simplicial map (dv

1)
q : S∗,q(y′) −→ S∗,0(d

q
1y
′) is a weak homotopy

equivalence, for all q ≥ 1 and all y′ ∈ ∆qC′. But, for any object
y′ ∈ ObC′ = ∆0C′, we have that S∗,0(y′) ∼= ∆(y′//F ), and then

|S∗,0(y′)| ∼= |∆(y′//F )| ' B(y′//F ),

where the latter is contractible by hypothesis. Hence, every |S∗,q(y′)|
is contractible.

It follows that each induced map |ϕ′q| : |S∗,q| → |∆qC′| is a homotopy
equivalence for all q ≥ 0, and consequently so is the induced map
|diagϕ′| : |diagS| → |∆C′| (21). This completes the proof of Theorem 2.

We end this section by particularizing Theorem 2 to the case of a
strict monoidal functor F : C → C′, between strict monoidal categories.
To do so, recall that any monoidal category can be seen as a 2-category
with only one object (see Remark at the end of Section 2).

Given such a strict monoidal functor F : C → C′, we shall define
its “homotopy fiber 2-category”, written by KF , as the homotopy fiber
2-category of F (considered as a 2-functor) at the unique object of
C′. Then, KF is the 2-category whose objects are the objects y′ of
C′, its arrows are pairs (u′, x) : y′ → z′ with x an object in C and
u′ : z′ → y′ ⊗ F (x) an arrow in C′, and its deformations

y′
(u′0,x0)

%%

(u′1,x1)

99⇓u z′

are those arrows u : x0 → x1 in C such that the following triangle
commutes

z′
u′0

zzuuuuuuuuuu
u′1

%%JJJJJJJJJJ

y′ ⊗ F (x0)
Id⊗F (u) // y′ ⊗ F (x1) .

Then, as an immediate consequence of Theorem 2 and the Remark
in Section 2, we have the following

COROLLARY 3.3. Let F : C → C′ be a strict monoidal functor be-
tween strict monoidal categories such that the classifying space BKF

is contractible. Then, the induced map BF : BC → BC′ is a homotopy
equivalence.
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